
Final Report
CS 5604: Information Storage and Retrieval

Integration and Implementation (INT) Team:

Alex Hicks, Cherie Poland, Suraj Gupta,
Xingyu Long, Yash Mahajan, Mohit Thazhath, Hsinhan Hsieh

December 18, 2020

Instructed by Professor Edward A. Fox

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract

The first major goal of this project is to build a state-of-the-art information storage,
retrieval, and analysis system that utilizes the latest technology and industry methods. This
system is leveraged to accomplish another major goal, supporting modern search and browse
capabilities for a large collection of tweets from the Twitter social media platform, web pages,
and electronic theses and dissertations (ETDs).

The backbone of the information system is a Docker container cluster running with Rancher
and Kubernetes. Information retrieval and visualization is accomplished with containers in
a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and
Kibana, respectively. In addition to traditional searching and browsing, the system supports
full-text and metadata searching. Search results include facets as a modern means of browsing
among related documents. The system supports text analysis and machine learning to reveal
new properties of collection data. These new properties assist in the generation of available
facets. Recommendations are also presented with search results based on associations among
documents and with logged user activity.

The information system is co-designed by five teams of Virginia Tech graduate students,
all members of the same computer science class, CS 5604. Although the project is an academic
exercise, it is the practice of the teams to work and interact as though they are groups within
a company developing a product.

The teams on this project include three collection management groups – Electronic Theses
and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) – as well as the Front-end
(FE) group and the Integration (INT) group to help provide the overarching structure for the
application.

This submission focuses on the work of the Integration (INT) team, which creates and
administers Docker containers for each team in addition to administering the cluster infras-
tructure. Each container is a customized application environment that is specific to the
needs of the corresponding team. Each team will have several of these containers set up in a
pipeline formation to allow scaling and extension of the current system. The INT team also
contributes to a cross-team effort for exploring the use of Elasticsearch and its internally asso-
ciated database. The INT team administers the integration of the Ceph data storage system
into the CS Department Cloud and provides support for interactions between containers and
the Ceph filesystem. During formative stages of development, the INT team also has a role
in guiding team evaluations of prospective container components and workflows.

The INT team is responsible for the overall project architecture and facilitating the tools
and tutorials that assist the other teams in deploying containers in a development environment
according to mutual specifications agreed upon with each team. The INT team maintains the
status of the Kubernetes cluster, deploying new containers and pods as needed by the collec-
tion management teams as they expand their workflows. This team is responsible for utilizing
a continuous integration process to update existing containers. During the development stage
the INT team collaborates specifically with the collection management teams to create the
pipeline for the ingestion and processing of new collection documents, crossing services be-
tween those teams as needed. The INT team develops a reasoner engine to construct workflows
with information goal as input, which are then programmatically authored, scheduled, and
monitored using Apache Airflow.

The INT team is responsible for the flow, management, and logging of system performance
data and making any adjustments necessary based on the analysis of testing results. The INT
team has established a Gitlab repository for archival code related to the entire project and

2

has provided the other groups with the documentation to deposit their code in the repository.
This repository will be expanded using Gitlab CI in order to provide continuous integration
and testing once it is available.

Finally, the INT team will provide a production distribution that includes all embedded
Docker containers and sub-embedded Git source code repositories. The INT team will archive
this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia
Tech CS Cloud.

The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team.
This is a very large undertaking and the wrangling of all of the products and processes would
not have been possible without their guidance in both direct and written form. We have relied
heavily on the foundation they and their predecessors have provided for us. We continue their
work with systematic improvements, but also want to acknowledge their efforts Ibid. Without
them, our progress to date would not have been possible.

3

Contents
List of Tables 6

List of Figures 8

1 Overview 9
1.1 Project Management . 9
1.2 Problems and Challenges . 9
1.3 Solutions Developed . 11
1.4 Future Work . 11

2 Literature Review 13

3 Requirements 14
3.1 Overall Project Requirements . 14
3.2 INT Team Requirements . 14

4 Design 16
4.1 Elasticsearch . 16
4.2 Docker Containers . 16
4.3 Kubernetes, Rancher, kubectl, and Containers . 18
4.4 Gitlab . 19
4.5 Ceph . 19
4.6 NFS . 20
4.7 Apache Airflow . 20
4.8 Virtual Machines . 20
4.9 Reasoner Engine . 21
4.10 Service API . 22
4.11 Apache Kafka . 22
4.12 System Architecture . 22

5 Implementation 24
5.1 Timeline . 24
5.2 Milestones and Deliverables . 26

6 User Manual 29
6.1 Rancher UI: Deploying Containers and Accessing Persistent Storage 29
6.2 Elasticsearch . 30
6.3 Service Registry REST API . 34
6.4 Interacting with workflow related REST APIs . 35

6.4.1 Reasoner API . 35
6.4.2 Airflow API . 37
6.4.3 Modifying goals using user inputs . 39

6.5 Containerizing a Service for Airflow . 40
6.5.1 Creating a Dockerfile . 40

4

6.5.2 Pushing the Service to a Container Registry 40
6.5.3 Using Input/Output Environment Variables 41

6.6 CI/CD with Gitlab . 41

7 Developer Manual 46
7.1 Providing Access to Ceph Persistent Storage from KGI and ELS VMs 46
7.2 Kubectl Installation and Introduction . 47
7.3 Deploying Containers from Rancher Catalogs . 48
7.4 Deploying Containers from Docker Hub . 48
7.5 Configuring and Deploying Containers through Gitlab Container Registry 50
7.6 Mounting Ceph storage on containers . 53
7.7 Running Airflow on the Kubernetes cluster . 58

7.7.1 Setting up the container . 58
7.7.2 Issues faced . 60

7.8 Running Postgres on the Kubernetes cluster . 61
7.8.1 Setting up the container . 61

7.9 Accessing Elasticsearch through the Elasticsearch VM 61
7.9.1 Issues faced . 62

7.10 Enabling pod to pod communication within a namespace 64
7.11 Installing Gitlab-Runner . 64
7.12 Installing Elasticsearch . 65
7.13 Service Registry Database . 67

Bibliography 73

A Manual Service Registry Artifacts 74

5

List of Tables
1 Tasks and Timeline . 24
2 Milestones . 26
3 Deliverables . 27

6

List of Figures
1 Representative configuration of Elasticsearch . 17
2 The difference between a container and virtual machine. [10] 17
3 Container administration hierarchy . 19
4 The components of Apache Airflow . 21
5 Kafka topics (blue) and producers and consumers 2019 23
6 System diagram for information retrieval and analysis system 23
7 CS cloud cluster . 29
8 Pods and namespaces . 30
9 Container running entrance . 31
10 Elasticsearch VM Confirmational Information . 31
11 Elasticsearch VM running Ubuntu . 32
12 ES v7.9.2 in a 3-node cluster in a Docker Container 32
13 Example Ingestion Schema of Elasticsearch VM . 32
14 Ways to Interact with Elasticsearch . 33
15 Indexing with Elasticsearch . 34
16 Indexing on Elasticsearch . 35
17 Index Mapping . 36
18 Index Shard Response . 37
19 Posting to the Service API . 37
20 Posting to the Goal API . 37
21 Frontend interaction with Airflow . 38
22 Response of the /generateWorkflow API endpoint . 39
23 Airflow API usage example . 40
24 An example Dockerfile for a service . 41
25 Example 1: .gitlab-ci.yml file . 43
26 Example 2: .gitlab-ci.yml file . 44
27 Gitlab CI/CD stages . 45
28 Terminal view of the tasks executing in the build stage as seen through the Gitlab

CI/CD interface . 45
29 Kubectl configuration . 48
30 Kubeconfig File . 49
31 List of pods in the namespace cs5604-fe-db . 50
32 Navigating to CS5604-INT namespace . 50
33 Launching a Rancher App . 50
34 Launching MySQL App . 51
35 Configuring the App . 51
36 Testing if MySQL App has been launched successfully 52
37 Search for container on Docker Hub . 52
38 Search container on Docker Hub . 53
39 Gitlab Container Registry . 53
40 Filling deploy token details . 54
41 Deploy Token Username and Password . 54
42 Registry Credentials on Rancher . 55

7

43 Adding deploy token details . 55
44 Deploying container from Gitlab Container Registry 56
45 Deployed Container "centostest" present under the namespace 56
46 Configure Docker image details on deploy portal . 57
47 Select Volumes and Add Volume to mount storage on container 57
48 Select ‘Ceph Filesystem’ as the Source on Ephemeral Volume portal’ 58
49 Enter Configuration details for the Ceph Filesystem on Ephemeral Volume portal . 59
50 Snapshot of a pod under a namespace and "View/Edit YAML" button 59
51 Adding Ceph Secret on Rancher . 60
52 VPN Connection . 62
53 SSH through Putty . 63
54 VM Directory for Elasticsearch . 63
55 VM Directory for Elasticsearch . 64
56 Creating a service name for pod to pod communication 65
57 Connecting the CI/CD system . 66
58 Adding a Gitlab Runner to Gitlab . 67
59 Schema of various tables used for registering services 69
60 WP Service Metadata . 74
61 WP Goal Metadata . 74
62 WP Reasoner Metadata . 74
63 ETD Service Metadata . 75
64 ETD Goal Metadata . 75
65 ETD Reasoner Metadata . 76
66 TWT Service Metadata . 77
67 TWT Goal Metadata . 77
68 TWT Reasoner Metadata . 78

8

1 Overview

1.1 Project Management

There are seven members in our team, so team management is crucial to accomplish the project
goal. We currently meet twice a week during class sessions using the provided Zoom meetings [5]
to discuss tasks and issues and to plan our next steps to ensure progress is being made towards the
course goals. Because the INT team’s role is to ensure an operating portable container environment
by integrating all of the teams’ efforts, we communicate with the other teams in class sessions and
on designated Discord [37] channels (e.g., #team-int) to discuss system design requirements and
resolve integration and implementation issues that hinder the overall project progress.

As mentioned above, we have adopted several tools to achieve efficient collaboration. We use
Discord and Zoom for team communication, Ally.io [53] for task management, Gitlab [29] for
code collaboration, as well as Docker Hub [22] and the Virginia Tech Container Registry [52] for
container distribution.

1.2 Problems and Challenges

We have faced a few challenges including:

a. Acquiring specific container requirements from the teams at an early stage of development.

b. We have been informed that last year’s team experienced challenges in transferring large
processed datasets into Ceph File System storage. We anticipate utilizing the methodology
outlined in the Ceph Tutorial to overcome these potential problems. §7.1.

c. We have been informed that last year’s team experienced challenges related to the container’s
shell on the Computer Science (CS) cloud including time-outs and early deletions. Solutions
for these prior challenges were provided by last year’s team and are outlined in the kubectl
tutorial. §4.3.

d. We have been informed that last year’s team experienced challenges related to the inability
to save and package a modified container as a new container image by using kubectl or
Rancher (see §2 and §4.3). Tools and dependencies installed after deploying the container
will not become part of the container image. This is because containers are ephemeral (short
lived) and Kubernetes, the underlying container orchestration for Rancher, does not allow
committing changes to a container. The solution is to update the container’s Dockerfile [20]
rather than the running container itself.

e. We have also been informed that last year’s team experienced challenges related to the fact
that some of the Docker container images may be very large. We anticipate that this will slow
deployment and the scaling of the services that these containers provide. A solution to this
problem is under development. One possible solution is to shrink the size of Docker images by
using tools such as Docker-Slim [3] or by creating very efficient Dockerfiles relying on Docker
best practices and caching mechanisms. In order to focus on the second solution, teams will
iterate development of their containers by selecting the correct base images, installing only
what is necessary, and removing any unused or unneeded packages and libraries.

9

f. Another challenge was installing Elasticsearch on the dedicated VM. This semester, we chose
to install Elasticsearch on a virtual machine instead of to the cluster on the recommendation
of the previous INT team. To this end, a CentOS 8 VM was provisioned by the CS Techstaff,
but we were unable to install a Dockerized version of Elasticsearch to this VM. We assume
this issue came from system configuration and security systems such as SELinux, but do
not know the root cause of the issue. In order to address this issue, we requested that the
VM be reprovisioned as an Ubuntu VM, which we independently tested with the Docker
Elasticsearch stack and verified that it would be a much more suitable host for the stack.
We then installed Elasticsearch with help from the documentation to configure the correct
environment [14].

g. We also ran into issues determining where the raw data for the collections would be stored.
Two of the content teams had their data located in the Ceph storage where it was easily
accessible. The third team received their data in Google Drive, which was not a productive
location to access it for indexing into Elasticsearch. To solve this issue, we worked with
SMEs, other researchers working with this data, and CS Techstaff in order to move all the
raw data into an NFS share that is mounted in all of the Kuberentes namespaces for easy
access by the content teams.

h. In order to run our Continuous Integration system, we needed a Gitlab Runner that was
configured with a Docker executor to run the builds of our containers for deployment to the
cluster [32]. This system requires a deployment outside of the cluster in order to provide
support, so this needed to be installed on an external VM. We gained access to a VM
provisioned for this project (kgi) and installed the Gitlab Runner and registered it with our
Gitlab instance (git.cs.vt.edu).

g. We faced a lot of issues deploying pods through Airflow and running Airflow’s scheduler on
the cluster. More about it can be read in Section 7.7.2.

h. We faced issues in building and running Docker containers through .gitlab-ci.yml file for
CI/CD. We had set up our Gitlab Runner using a specific configuration file and we did
not realize that it was mounted incorrectly. As such, any changes we made to reconfigure
the runner were not reflected in the running instance. In order to solve this problem, we
restructured how we attached the configuration file to the runner.

i. Once we installed Elasticsearch on the virtual machine and made it accessible for the content
teams, we encountered several issues. First, we realized that we will need to enable the
security features on Elasticsearch and make sure access is locked down. Currently, everything
is located within the Virginia Tech system, but as we develop the application further, security
should be a top concern. Along with that point, we had to make sure that we were allowing
the correct access to the FE team to provide to the outside world. They currently have access,
but again, that should be secured further to avoid unnecessary exposure of the data. Then,
we experienced some data loss from the Elasticsearch database. We determined the cause
of our Elasticsearch problems, after the database was found empty of indices and a GDPR-
based ransomware notice was found. As a result, we deleted the entire operating system and
started over with a clean VM and reinstalled Elasticsearch. We believe that the source of the
vulnerability was the fact the the Elasticsearch stack automatically exposes itself to the open

10

internet, overriding any existing firewall rules, thus our previous idea that the installation
was safe enough in the short term was incorrect. In order to solve this problem, we deleted
and reimaged the virtual machine that was running Elasticsearch and on the second install,
made sure our stack was using SSL and a secure username and password that was safely
distributed to each of the other teams. Along with these updates, we decided Kibana was no
longer necessary, since we were not planning to keep it long term anyway and it would have
required additional time to set up securely.

j. We encountered an issue with CI/CD where our builds were failing due to rate limits on
Dockerhub. We found that this was due to Docker adding rate limits to their free tier
accounts. In order to solve this issue, we discussed it with Mike Irwin and Chris Arnold
and they recommended we update the pull_policy of our Gitlab Runner to avoid making
as many requests. They also suggested, if that does not completely solve the problem, to
mirror the images we are pulling from Dockerhub somewhere local, whether it be on the VM
or using one of Virginia Tech’s Docker registries.

1.3 Solutions Developed

Throughout the project, we faced several challenges and correspondingly solutions were de-
veloped to address those challenges. We reached out to Michael Irwin, a Docker Captain
here at Virginia Tech for advice developing our containers as well as for recommendations for
technologies to fulfill some tasks, including message passing using Kafka. He in turn put us in
contact with Brent Kremer, who is a technical manager and product owner for the Virginia
Tech data lake. A third resource we have been put in contact with is Chris Arnold, a member
of the Computer Science Technical Staff at Virginia Tech. His efforts were integral to the
previous INT team’s efforts and we leveraged his expertise as a resource when necessary. A
fourth resource we have been put in contact with is Rob Hunter, a member of the Computer
Science Technical Staff at Virginia Tech. His expertise was critical for us in setting up the
virtual machines securely. Additionally, we had the benefit of learning from the previous
team’s decisions and were able to plan ahead on some of the issues that they encountered.
Specifically, this helped us build our containers using Dockerfiles from the ground up as well
as building on their research into which technologies they selected for various tasks including
a continuous integration and continuous deployment (CI/CD) pipeline. As discussed above
in the Problems and Challenges section, we ran into several issues getting Elasticsearch and
the Gitlab Runner set up as well as where the raw data was located. Unfortunately, the
solutions for these problems required stepping outside of the cluster into an NFS share and
two virtual machines. This did complicate our architecture design, but necessarily so, and it
has been reformatted and communicated to the rest of the teams and course staff as further
issues have arisen.

1.4 Future Work

The INT team has been working with each of the content teams to get their services working
within the cluster. Despite reaching this point, we still have yet to finish the service API to

11

automate service registration and provide it to the end user from the front end. Additionally,
the Elasticsearch system is secure, but it is currently using self-signed certificates which are
causing issues with the Front End team’s workflow, and should be upgraded to correctly
signed certificates from Virginia Tech. Also relating to Elasticsearch, we could add additional
accounts for different team’s services in order to further secure the system and avoid issues of
automated services touching the wrong data. We should finish solving the Docker rate limit
problem with Gitlab CI by mirroring the images we need to somewhere local to Virginia
Tech’s network. Airflow currently supports only inputs in the form of files; in the future
we expect it to be able to read inputs from Elasticsearch as well. A generalized service can
be created for achieving this. The developed service can then be prepended to appropriate
workflows.

Another idea for future work would be to connect the service API to the reasoner table in the
database. Currently, the API creates the correct entries in the goals and service tables, but it
doesn’t populate the reasoner table because that requires the additional user input of which goals
are required as input for the specific goal. This would require either an additional API or a
significant modification to the current API to access another table in the database.

12

2 Literature Review
Containers [42, 51] are replacing virtual machines and are being adopted to modernize applications.
Containers are favored for their lightweight, isolation, and portability features [43]. Such features
are possible by leveraging Linux primitives such as cgroups and namespaces [50]. The container
market will be a $4.3 billion market by 2022 [6]. Docker, the leading container management
platform [19], is the main agent that is driving the adoption of containers [43]. While Docker
remains current state of the art, several other container runtimes, including Podman [4] by Red
Hat, provide stable alternatives. The development and success of Podman has led to a lack of
support by Red Hat and CentOS for Docker [34]. The fact remains, however, that Docker is the
best suited container runtime due to its longer history and better integration with the current
systems as discussed below. This may change going forward as the Docker runtime will no longer
be supported on Kubernetes as of late 2021, but the Docker build system will still be supported [39].

For this project, we are leveraging the CS cloud [2]. The CS cloud deploys Rancher [45] that
provides services on top of Kubernetes [33] which provides the perfect infrastructure for us to
deploy our multi-container information retrieval system. Rancher is an open source platform that
provides a user interface for a Kubernetes cluster and handles the management and facilitates the
monitoring of Docker [21] container clusters. Rancher provides a simple workload environment, a
centralized control plane, and enterprise-grade technical support.

Kubernetes [33], an open-source cluster manager from Google, has become the leading platform
for powering modern cloud-native containerized micro-services in recent years. Kubernetes is a
Greek word meaning helmsman of a ship or pilot. This naming has continued the container
metaphor used by Docker. Its popularity is driven by the many benefits it provides, one of which is
the ease of install on a small test bed (as small as one virtual machine or physical server). However,
running Kubernetes at scale with production workloads requires more resources in addition to more
thought and effort [44]. In Kubernetes, a node is a worker machine; it may be a virtual machine
or a physical machine, depending on the cluster. Each node contains the services necessary to run
pods and is managed by the master components of Kubernetes. Pods, a Kubernetes abstraction,
host an application instance. Each pod represents one or more containers and some shared resource
for those containers such as a network.

The ELK Stack consists of three services, Elasticsearch, Logstash, and Kibana [14, 13, 12,
16]. Elasticsearch is a distributed, open source search and analytics engine for all types of data,
including textual, numerical, geospatial, structured, and unstructured. It is built on Apache Lucene
and uses a simple REST API that is distributed, fast, and scaleable. Elasticsearch is the central
component of the Elastic Stack, a set of open source tools for data ingestion, enrichment, storage,
analysis, and visualization. The Elastic Stack also includes Beats, a collection of lightweight
shipping agents for sending data to Elasticsearch. The ingested documents are pre-processed to
extract both text data and metadata. Metadata of the ingested data is indexed by Elasticsearch
and stored in Ceph. Kibana interacts with Elasticsearch to provide a framework for initial data
analysis. The Logstash portion of the stack analyzes user logs to provide efficient recommendations.

13

3 Requirements

3.1 Overall Project Requirements

Since the goal of the project is to build an Information Storage and Retrieval System, the overall
project requirements with respect to the above goal can be noted as:

• The unit of processing should be of either an entire document, or an additional document
that is derived from an original document, such as by segmentation/extraction.

• Searching should be facilitated to support both full-text and the metadata of a document.

• Searching and browsing should be supported based on facets connected with the data or
metadata.

• Searching and browsing should be supported based on facets associated with information
derived from documents, through analysis, classification, clustering, summarizing, or other
processing.

• Logs should be collected, of user queries and clicks, and analyzed to support users. Recom-
mendations should be identified and made available to users.

• Selection of techniques, including indexing and weighting, should ensure that operations are
effective.

• Ranking of search results should be based on the most effective method.

• Pre-processing should be tailored to the content collection, to handle page images (i.e., a
suitable method of OCRing, as would be needed if an ETD has only page images, rather
than text) and to manage linguistic issues (e.g., stemming or part-of-speech disambiguation
or phrase identification or entity recognition).

• Data and software produced must be released to the project for further refinement and
utilization. Doing so would benefit from students working with https://git.cs.vt.edu/
(VT Computer Science Gitlab).

3.2 INT Team Requirements

Our team is responsible for the integration and implementation of all the teams’ efforts. This
includes:

• Designing and deploying customized Docker containers for each content team.

• Managing the Kubernetes cluster on the CS Cloud via Rancher and kubectl.

• Connecting containers to Ceph storage for each team for data retrieval and storage.

• Developing a Reasoner Engine and Workflow Engine to take requests, generate workflow,
execute workflows, and send responses back.

14

https://git.cs.vt.edu/

• Coordinating with Operations on associated VMs and external storage.

• Evaluating and testing the cluster components at various stages of development.

• Developing a CI/CD Pipeline to test and automate deployment of the application.

15

4 Design
The class project development and production phases will leverage the CS cloud infrastructure
that is running Rancher which is based on the Kubernetes container management platform. Since
all of the class teams will be initially working on the testing cluster on the CS cloud, we have
created projects, one per team, to provide a level of organization in the testing cluster. The five
projects are CS5604-ETD, CS5604-TWT, CS5604-WP, CS5604-FE, and CS5604-INT. Under each
project, we are planning to deploy a collection of containers, connected in order to form a workflow
to ingest and index the various forms of data this project is investigating. One of these containers
will be a CentOS container that is connected to a Ceph storage virtual machine running Ceph File
System, that will be mounted on the CS Cloud cluster for access by the teams.

4.1 Elasticsearch

Elasticsearch is a distributed, open source search and analytics engine for data ingestion, en-
richment, storage, and analysis, for all types of data, including textual, numerical, geospatial,
structured, and unstructured. Elasticsearch is built on Apache Lucene, released under an Apache
license, and contains a simple RESTful API that is distributed, fast, and scaleable. It is Java-based
and available for many platforms that can search the index documents files in diverse formats. Data
is stored in a schema-less format in JSON documents, similar to NoSQL databases, and interfaces
with Java APIs. The main use cases for Elasticsearch are scraping and combining public data,
full-text search, event data and metrics, and logging and log analysis. It performs near-real-time
searches, provides multi-tenancy support, automatically indexes JSON documents, and indexes
using type-level identifiers.

An Elasticsearch cluster can contain multiple indexes which can contain multiple types (tables)
each holding multiple documents (rows) and each document has properties (columns). Data are
stored in indexes that are functionally separated into primary and replica shards. Elasticsearch
supports multiple indices. Multiple indices can be created and separate indices may be used to
store different types of data. Data may be downloaded using curl or via HTML through a browser.

Ingested documents are pre-processed to extract both text data and metadata. Metadata of
the ingested data are indexed by Elasticsearch and stored in Ceph. Kibana will be available for
parts of the development process as a visualization platform that interacts with Elasticsearch in
order to provide a framework for initial data analysis. However, an API developed by the FE team
will be utilized for the final accessible end-user product.

In this year’s project each separate team will be responsible for developing their own index
structure for their data.

Elasticsearch permits multiple queries at the same time. Different types of search queries may
be developed by the different teams that best represent the different types of data being ingesting
into Elasticsearch. Additionally, we may be integrating Apache Kafka into the workflow to avoid
overwhelming Elasticsearch as discussed in Section 4.11

4.2 Docker Containers

Docker is a tool designed to make it easier to create, deploy, and maintain the applications by using
different customized containers. It benefits both system administrators and software developers,

16

Figure 1: Representative configuration of Elasticsearch

which is the crucial part of DevOps technologies. In addition, Docker containers are an OS-level
virtualization whereby the operating system isolates the applications and limits its resources (see
Figure 2).

Containers enable developers to run applications in a reliable and portal way by packaging code
and all of its dependencies, so the application runs quickly and reliably. This facilitates fast and
consistent application deployment regardless of the deployment environment. That has led to the
widespread adoption of container technology. [38].

.

Figure 2: The difference between a container and virtual machine. [10]

Containers leverage Linux kernel features1 – control groups (i.e., cgroups) and namespaces – to
achieve the desired isolation and portability features [17]. Docker is currently the world’s leading
container management platform, followed by CoreOS rkt [35], Mesos [27], and LXC [18]. Besides,
Docker simplifies the standard applications by helping with packing and running applications on
the Docker platform.

Containers are created from customized images that are stored in a container registry both
privately and publicly such as Docker Hub [22], Quay [49], and Google Container Registry [1]. Users

1Docker can run atop other operating systems by leveraging a Linux-based hypervisor.

17

can easily access different kinds of images which support various services and also can contribute
their own images into the community by a few commands through your terminal. Virginia Tech
also provides a container registry [52] that is hosted locally.

The INT team will create, deploy, and maintain containers based on requirements from each
team. But, because of the portable nature of containers, all of the teams can deploy Docker
containers on their PC and change the images according to their project needs and also can access
the images by pulling and pushing commands. The simplicity of Rancher and kubectl allows us
to work in the CS cloud cluster. At the end, containers from other teams can be integrated into
one container cluster.

4.3 Kubernetes, Rancher, kubectl, and Containers

Large-scale applications often involve a number of services that live in their own containers and
then are deployed on clusters or across multiple machines. As the traffic increases, more instances
of the services can be signed up which may not scale linearly and can get difficult to manage. Hence,
to address this issue an orchestration engine is employed, such as Kubernetes. Kubernetes (K8s)
is an open-source system that automates the deployment, scaling, and management of container
clusters. It is utilized as a higher-level abstraction and simplifies the management of container
clusters by grouping the containers that form an application into logical units [33].

Rancher is an open-source platform that provides services on top of Kubernetes [45]. In addition
to providing Kubernetes-as-a-Service, Rancher has the following capabilities:

• Rancher gives unified administration of clusters and the containers running in them. Since
each team has its own project and namespace, operational and security challenges can be
overseen proficiently.

• Rancher is resource-agnostic. It provides the ability to bring up clusters from different
providers, migrate resources, and manage any kubernetes-based platform in both private
and public clouds [46]. Rancher unifies the individual deployments as a single Kubernetes
Cloud and presents them through a single front-end interface.

• Rancher provides easy authentication policies for different users and groups. Admins can
enable self-administration by assigning the organization of Kubernetes clusters or projects
and namespaces directly to individual users or groups [47]. This is particularly valuable since
it permits us to control memberships, ownerships, permissions, and capabilities of different
team projects.

Kubectl [8] is the Kubernetes command-line tool to control the Kubernetes cluster manager.
Kubectl requires a file named ‘config’ in the $HOME/.kube that needs to be configured with the
cluster credentials one needs to connect. Kubectl can be used to deploy and manage pods (made
up of a container, or several closely related containers) in the Kubernetes cluster. It is also used
to achieve CI/CD. Kubectl would be installed in each team member’s local host so that one can
easily execute necessary deployments directly to the cluster.

Figure 3 shows the relationship between Kubernetes, Rancher, kubectl, Kubernetes pods,
Docker containers, and Kubernetes-managed physical nodes. Rancher generally provides a user
interface and API for users to interface with the Kubernetes cluster. Kubectl on the other hand

18

provides a command line interface to manage and work with the Kubernetes cluster. Kubernetes
manages nodes (i.e., worker machines). A node may be a VM or a physical machine. Each node
contains the services necessary to run Pods including the container runtime (i.e., Docker), kubelet,
and kube-proxy [7]. Pods are the smallest deployment unit in Kubernetes which host the applica-
tion instance. Each Pod represents a single container or multiple tightly coupled containers that
share resources. The Pod is an environment in which containers run; it exists until the container
is terminated and the pod is deleted [9].

Figure 3: Container administration hierarchy

4.4 Gitlab

For this project, the teams are using Gitlab in order to store and version control their respective
codebases. In order to maintain the security of any sensitive data analyzed in this project, the teams
are using an internal, self hosted instance of Gitlab set up by the Virginia Tech Computer Science
Department at https://git.cs.vt.edu/. Additionally, Gitlab provides a hosted and integrated
Continuous Integration environment that interfaces with Kubernetes and allows the project to
remain completely within the Virginia Tech network. In order to create the CI environment, a
Gitlab Runner was installed on the kgi VM in order to provide the runner to build the Docker
images for deployment to the Kubernetes cluster.

4.5 Ceph

In this project, the Ceph [58, 48] storage system is being used as our persistent shared storage that
has been mounted on different components of our storage and retrieval system such as containers,

19

https://git.cs.vt.edu/

ETDs VM, and an Elasticsearch VM. Ceph is an open source software set up to facilitate excep-
tionally adaptable object, block, and file based storage under one unified system. Ceph uses the
Ceph Block device, a virtual disk that can be mounted to either physical Linux based servers or
virtual machines (VMs). It is highly scalable, flexible, and reliable, and is widely used in modern
data centers, and is supported by many cloud computing vendors. Ceph is being used to provide
persistent storage for the ephemeral containers that will make up the workflow pipelines.

4.6 NFS

For this project, in addition to Ceph, we have created a large NFS share that will store the raw
data that will be consumed by the content teams and ingested into Elasticsearch. As additional
datasets are included, they will be stored here as well. This share will also be mounted on the
Docker containers in order to give the workflow pipelines access to the raw data on which they run
their workflows.

4.7 Apache Airflow

Apache Airflow is an open-source platform built using Python to schedule, manage, create, and
run workflows [26]. NFS also supports archiving results, such as output, in addition to input
capability. Airflow will be used to tie all services together through workflows. Each workflow will
represent a set of services that can be run on the final system. The aim of a workflow is to take
a certain input and produce a desired output. Workflows are idempotent, which means that the
final output is always reproducible regardless of the number of times it is run. Workflows are
represented as Directed Acyclic Graphs (DAGs). Each node in the graph represents a task to be
performed in the workflow. The core components of Airflow are as follows (ref. Fig 4).

• Webserver - The webserver hosts an application which serves as a user interface (UI) for
Airflow. The UI can be used to manage and run existing workflows, check the logs generated
by tasks, and monitor the status of each task in a workflow.

• Metadata Database - The database stores the current state of tasks and can be accessed from
the UI as well.

• Scheduler - The scheduler looks at a DAG, decides the tasks that need to be run, and stores
the status of each task in the database. It also decides when each task needs to be run.

• Executor - The executor is the component that runs the scheduled tasks. Airflow supports
execution locally, on distributed task queues (such as celery), or on a Kubernetes cluster.
In our project, the Kubernetes executor will be used to run tasks. Using this helps Airflow
deploy pods based on the workflow in execution.

4.8 Virtual Machines

This project makes use of two virtual machines, a knowledge graph virtual machine located at
kgi.cs.vt.edu, and an Elasticsearch virtual machine located at elasticsearch.cs.vt.edu. The kgi VM

20

Lo
gs

Local Storage
Logs Task Statuses

Ta
sk

s

Task Scheduler Metadata
Database

Lo
gs

Executor

Ta
sk

s

Webserver
Interactions

User

Task Statuses

Figure 4: The components of Apache Airflow

is currently running our Gitlab Runner, and can be used by the FE team for running parts of the
knowledge graph that are not suitable for the cluster. The Elasticsearch VM is currently running
a Dockerized version of Elasticsearch for both the content teams and the FE team to access for
indexing and searching the data, respectively. These two VMs both have Docker installed on them
to run their respective applications.

4.9 Reasoner Engine

The reasoner engine will work closely with Airflow. The main purpose of the reasoner is to mine
a set of services to be executed as a workflow. All of the services supported by the system will
be stored in a MySQL database. This database can also be used to determine already existing
services. Letting the users know about the existing services in the frontend helps them build new
workflows utilising already existing services. Once a workflow is determined, it will be sent to
Apache Airflow for execution.

21

4.10 Service API

In order to provide an interface to the Reasoner Engine discussed above, we are creating a service
API that will interact with the same database as the Reasoner in order to create, update, delete,
and get the workloads provided by the Reasoner (and Airflow by extension). The structure of this
API consists of a Dockerized Flask application to be deployed to the Kubernetes cluster where
it can connect with the database and the FE environment. This API will be exposed to the FE
where some of the views will provide methods to call these workflows. One example of this is the
service that indexes data into Elasticsearch. All of the services provided by the content teams can
be found in Appendix A.

4.11 Apache Kafka

In this project, one of the ultimate goals is to continually expand three content collections. To
handle the ingestion of new documents, we currently store the files directly into Ceph Storage after
being processed, which works well for now. However, considering the future usage and scalability,
we investigate Apache Kafka [40] for expansion.

Apache Kafka is a distributed, partitioned, replicated commit log service [28]. It is based on
the publish-subscribe mechanism where producers write messages into a buffer while consumers
read messages from it. Apache Kafka’s architecture includes the following components:

• Records/Messages: contain key (optional), value, and timestamp;

• Topic: A category or feed name where messages are published and stored in. A topic is a
log consisting of many partitions that are distributed in servers;

• Producer: Any object that can post/publish messages to any topic;

• Broker: A controller or server who receives the request and does the particular operation.
For example, it: receives messages from producers and stores them on disk keyed by unique
offset or allows consumers to fetch messages by topic, partition, and offset;

• Consumer: It can pull data from/subscribe to one or more topics, that are maintained by
the Broker, to consume published messages.

For the case that a user specifies a very large queue of documents to be processed, Kafka will
be able to scale and throttle both levels of queue processing such that system resources are not
adversely impacted. Ultimately, as the number of collections grows, indexing of documents into
Elasticsearch would be the bottleneck of the ingestion system. Queuing the documents through
Kafka allows for the most efficient means of prioritizing and scheduling how new documents from
all collections are to be ingested. Consumers can consume produced topics in real time.

4.12 System Architecture

Figure 6 shows the structure and the components of the information system that is designed in
this project as described in this report.

22

Figure 5: Kafka topics (blue) and producers and consumers 2019

Figure 6: System diagram for information retrieval and analysis system

23

5 Implementation

5.1 Timeline

Table 1 shows our schedule. It contains the task description, our estimated timeline in weeks, team
members responsible for accomplishing the task, and the current status. This schedule has been
added to and changed over time.

Table 1: Tasks and Timeline

Task Timeline (week) Assignee Status
CS Cloud project creation for each
team

1 Alex DONE

Student assignments as owners for
their corresponding projects

1 Alex DONE

Deployment of containers under
each project

3 ALL DONE

Ceph client installation on VMs
(virtual machines) and mounting of
CephFS for cloud storage access

3 ALL DONE

Locally testing out Apache Airflow 3 Mohit
and Yash

DONE

Setting up a container for Apache
Airflow

4 Mohit DONE

Creation of pods (containers) for
the ELS and FE teams for data re-
trieval from Ceph

4 ALL DONE

Testing of team container(s) in the
CS container cluster

4 ALL DONE

Aggregation of teams’ containers
into one testing cluster (the devel-
opment namespace)

4 ALL DONE

Creation of an Elasticsearch tuto-
rial

4 Cherie DONE

Creation of a Kubectl installation
tutorial

4 Suraj DONE

Creation of a tutorial for leveraging
Rancher’s Catalog and App to de-
ploy ready-made containers

4 Suraj DONE

Creation of a tutorial for leveraging
Docker Hub to deploy ready-made
containers

4 Suraj DONE

Continued on next page

24

Table 1 – continued from previous page
Task Timeline (week) Assignee Status

Creation of a tutorial to provide
access to Ceph Persistent Storage
from ETD and ELK VMs

4 ALL In-Process

Setting up a database for register-
ing services (Postgres)

5 Yash DONE

Creation of Apache Airflow Devel-
oper Manual

5 Mohit DONE

Creation of Postgres Developer
Manual

5 Mohit DONE

Assessment of additional container
requirements for each team that
came out of their initial discovery
processes

5-7 ALL DONE

Implementing and deploying the
reasoner engine based on the work-
flows provided by all the other
teams

6-8 Mohit
and Yash

DONE

Creation of Flask API for Workflow
Management

6-8 Alex DONE

Integration of Elasticsearch API for
Managing Datasets

6-8 Xingyu DONE

Implementation of additional con-
tainer requirements for each team’s
container

6-8 ALL TBD

Prototype of integrating the rea-
soner engine and Airflow to deter-
mine a workflow from a set of work-
flows

6-8 Mohit
and Yash

DONE

Creation of a User Manual for cre-
ating an Airflow compatible Docker
container

6-8 Mohit DONE

Creation of a User Manual for inter-
acting with Airflow and Reasoner
APIs

6-8 Mohit DONE

Prototype of integrating the rea-
soner engine and Airflow to deter-
mine a workflow from a set of work-
flows

6-8 Mohit
and Yash

DONE

Creation of a tutorial to deploy con-
tainers through a private repository

6-8 Suraj DONE

Continued on next page

25

Table 1 – continued from previous page
Task Timeline (week) Assignee Status

Creation of a User Manual to de-
ploy Kafka and decide whether to
use it

6-8 Hsinhan Done

Container testing, evaluation, and
integration into the CS cloud Ku-
bernetes cluster

6-8 ALL Partially
Done

Development of a system for au-
tomatic/direct inclusion of future
new data into our information sys-
tem (time permitting)

7-8 ALL TBD

Evaluation study of system perfor-
mance (time permitting)

9-11 ALL TBD

Integrating the reasoner and Air-
flow APIs, enable dynamic gener-
ation of Airflow documents

9-12 Mohit DONE

Creation of a User Manual for
CI/CD

9-11 Suraj DONE

Helping content teams to integrate
CI/CD platform

9-12 All DONE

Setting up unit and integration
tests

9-12 Xingyu DONE

Manual Service Registration 13-15 Mohit DONE

5.2 Milestones and Deliverables

Our milestones over time are shown in Table 2. We will provide deliverables as listed in Table 3.

Table 2: Milestones

Task # Completion Date Milestone
1 09/3 Setup of namespaces and team projects in CS testing clus-

ter, with students each added to their group project
2 10/23 Setup of Docker container models with Ceph and NFS

mounted
3 10/23 Connect Virtual Machines to Ceph
4 09/12 Prepare documentation/tutorial on installing kubectl and

connecting to the CS cloud cluster
5 09/12 Complete setting up Airflow locally and tested it out by

running a few workflows
Continued on next page

26

Table 2 – continued from previous page
Task # Completion Date Milestone
6 09/17 Create Docker container for Airflow on CS container cluster
7 09/24 Create Docker container for Postgres on CS container clus-

ter
8 11/16 Document and prepare important tutorials of the process

being followed for future reference
9 11/16 Prepare tutorial on deploying containers from Rancher cat-

alogs
10 11/3 Deploy initial development versions of containers requested

by other team
11 10/23 Prepare tutorial on committing changes to a new container

image
12 10/23 Prepare tutorial on building a Docker image from a Docker

file
13 10/23 Prepare tutorial on deploying containers to git.cs.vt.edu
14 10/28 Prepare tutorial on how to change the Elasticsearch config-

urations
15 11/1 Deploy Postgresql container and the Flask application to

get the first version of system running
16 11/3 Deploy Airflow container and make it accessible from the

frontend
17 11/16 Research on CI/CD
18 11/16 Prepare tutorial and give a demo on how to achieve CI/CD
19 12/8 Manual Service Registration

Table 3: Deliverables

Task # Completion Date Deliverables
1 09/5 Project setup with initial baseline containers for the other

teams
2 09/17 Interim Report 1
3 09/17 Tutorials for how to use various containers
4 09/17 Setting up containers for Apache Airflow
5 10/25 Developer manual for setting up Apache Airflow
6 10/1 Developer manual for setting up Postgres
7 10/8 Interim Report 2
8 10/12 Docker container files showing example services
9 10/19 Container for the Reasoner Engine to generate workflows

with information goal as input
10 10/23 Container for running Airflow API

Continued on next page

27

Table 3 – continued from previous page
Task # Completion Date Deliverables
11 10/23 Developer Manual for building Airflow compatible Docker

containers
12 10/23 Developer Manual for running Airflow API
13 10/29 Interim Report 3
14 11/10 Complete set up of Airflow to programatically author, mon-

itor and schedule the workflows generated by the reasoner
engine.

15 11/16 Demo on CI/CD using GitLab
16 11/30 Load testing
17 11/30 TWT Team Service Registration
18 12/6 ETD Team Service Registration
19 12/8 WP Team Service Registration
20 12/9 Final Project Report

28

6 User Manual

6.1 Rancher UI: Deploying Containers and Accessing Persistent Storage

With this introductory guide, users learn how to navigate the Rancher cluster, deploy containers
from images either from Docker Hub or from Rancher Catalogs, and execute processes in containers.

1. To view your respective group project(s) hosted at CS Cloud, log in to the website and
browse under the Global menu to testing.

Figure 7: CS cloud cluster

2. A submenu appears under testing with a listing of all projects in which you have membership
or ownership privileges. Figure 7 shows an example of a user with membership in all five of
the projects, with the CS5604-INT project selected.

3. Clicking a group project will load a view of the namespaces and pods within each namespace
in that project and the Docker image(s) used to deploy the pod(s) (see Figure 8).

4. Click the "..." button on the right side of the container you want to use, and select "Execute
Shell" from the pop-up menu to run a shell in the container (see Figure 9). Note that all
executions in this shell are not persistent in the container. The container will restart/reset
and all non-committed changes will be lost. Storing data in the Ceph File System as a
persistent volume is a way to save execution results.

5. In the container’s shell, a user can execute commands such as running programs including
running Elasticsearch and MySQL commands. Installing required packages (e.g., via pip)
through the shell is not recommended, because the container execution runtime is ephemeral.
To persist installed packages, add installation commands to the Dockerfile or commit changes
via Docker CLI.

29

https://cloud.cs.vt.edu

Figure 8: Pods and namespaces

6.2 Elasticsearch

This section is used to help users interface with Elasticsearch. Figure 13 shows the workflow and
schema of the Elasticsearch configuration.

1. There is a virtual machine (VM) dedicated to Elasticsearch on the cs.vt.edu network, with
sufficient local storage to hold various indexes for each of the 3 content collections.

2. The VM is configured for Elasticsearch to automatically ingest data into the VM.

3. The VM is running ElasticSearch v7.9.2 in Docker containers configured in a multi-node
cluster.

4. Users will be able to connect to ElasticSearch running on the VM, to send it data.

5. The front-end API will be able to connect to Elasticsearch to send queries and return result
lists.

30

Figure 9: Container running entrance

Figure 10: Elasticsearch VM Confirmational Information

6. Data will be ingested using workflows running in the Kubernetes Pods running on the cluster
in Docker containers that are created by CI and Airflow. A service API for interacting with
Elasticsearch will be running in containers on the cluster.

31

Figure 11: Elasticsearch VM running Ubuntu

Figure 12: ES v7.9.2 in a 3-node cluster in a Docker Container

Figure 13: Example Ingestion Schema of Elasticsearch VM

32

Figure 14: Ways to Interact with Elasticsearch

7. Elasticsearch uses defaults that are intended to provide good full text search, highlighting,
aggregations, and indexing that should all just work without the user having to configure
anything.

8. Once data has been indexed in Elasticsearch, users can search it by sending requests through
the search endpoint. This will be routed through the user interface developed by the FE team.

9. Sharded indexes will be confirmed once created.

33

Figure 15: Indexing with Elasticsearch

Teams may also interact with Elasticsearch programmatically using the example Python file
located in the source code [36].

6.3 Service Registry REST API

In order to interact with the service and goal tables that Airflow pulls from, the Front End team
will interact with the service API. The service API is exposed at http://[2001:468:c80:6102:
1:7015:81b3:1760]:5000/services/ and the goal API is exposed at http://[2001:468:c80:
6102:1:7015:81b3:1760]:5000/goals/. Both of these endpoints function similarly so the below
section will refer only to the service endpoint. This endpoint provides a full CRUD API where a
user can send the following HTTP requests:

• GET - /services/ or /services/<id>/

• POST - /services/

• PUT - /services/<id>/

34

http://[2001:468:c80:6102:1:7015:81b3:1760]:5000/services/
http://[2001:468:c80:6102:1:7015:81b3:1760]:5000/services/
http://[2001:468:c80:6102:1:7015:81b3:1760]:5000/goals/
http://[2001:468:c80:6102:1:7015:81b3:1760]:5000/goals/

Figure 16: Indexing on Elasticsearch

• DELETE - /services/<id>/

For the POST and PUT requests, the data should be passed as JSON encoded data in the following
format:

6.4 Interacting with workflow related REST APIs

The frontend will have to generate and trigger workflows using REST API calls (see Fig. 21). The
Reasoner API is accessible at http://reasoner.cs5604-int-test.svc.cluster.local:5000 and
the Airflow API is accessible at http://airflow.cs5604-int-test.svc.cluster.local:5000.

6.4.1 Reasoner API

This API is used to mine workflows using the reasoner table (see Section 7.13) and dynamically
generate an Airflow compatible document that would represent the mined workflow. The following

35

Figure 17: Index Mapping

are the endpoints accessible.

• /generateGrammar - This endpoint supports the GET method and is used to modify the
existing production rules. Production rules are generated by reading values from the reasoner
table. Therefore, every time any update is done on the table, this endpoint needs to be called.
The generated grammar is stored as a file within the container running the API. This API
call will be done as a part of the service registry API and will not have to be handled by the
frontend.

• /generateWorklow/<requestedGoal>?dry=True - This endpoint supports the GET method
and is used to generate the workflow based on the production rules generated using the
previous endpoint. Along with this, it also dynamically generates an Airflow document

36

Figure 18: Index Shard Response

Figure 19: Posting to the Service API

Figure 20: Posting to the Goal API

for the mined workflow using Python Jinja templates. This document is then uploaded to
the Airflow API (/workflow/upload endpoint) implicitly. The second parameter states the
goal_id (see Section 7.13) needed by the end user. The endpoint returns a JSON response
as shown in Figure 22. The endpoint also has an optional parameter dry which can be either
True or False (default). If it is True, the dynamically generated Airflow document does not
get uploaded to the Airflow API.

6.4.2 Airflow API

This API is used to run workflows or run a particular service in a workflow (useful when user
interaction is required). The following endpoints are available in the API.

37

Airflow Service Reasoner Service

Services
DB

NFS

Workflow Service

Creates copy
of default

goals

Workflow Service

Workflow Service

Read input goals
for workflow

services

Read service
metadata Mine a workflow

Frontend Service

Modify input goals / read output goal

Output goal

Output goal

Output goal

Generate
workflow

Trigger workflow / read logs

Deploy

Figure 21: Frontend interaction with Airflow

• /workflow/upload - This endpoint expects a POST request with the files parameter to
be set to the dynamically generated Airflow compatible document obtained by calling the
reasoner API. No explicit API call needs to be made by the frontend to upload the document.
The endpoint is implicitly called in the /generateWorkflow route of the reasoner API.

• /workflow/run - This endpoint is used to run a workflow as it is. If the end user does not
wish to modify any input goals during a workflow execution, this endpoint can be used to run
the workflow from the first service to the last. During the execution, all default values will be
used (stored in the file_location field of the Goal Metadata table) in services. The POSTed
data to this endpoint should contain a JSON dictionary (refer to 23 for example Python code).
Once the data is posted, a key and a result_url is obtained in the response which can be
used to see if the execution of the workflow is completed or not. If the workflow completes
execution or fails unexpectedly, the logs can be found by sending a GET to the result_url.

• /service/run - This endpoint is used to run a particular service within a given workflow.
This endpoint is helpful to use when services in the workflow require user interaction. Using
this endpoint, the frontend can run a service in the workflow, wait for the result, present it to
the user, obtain user input, and then execute the next service in the workflow using this user
input. The request/response semantics for this endpoint are similar to the /workflow/run
endpoint.

38

Figure 22: Response of the /generateWorkflow API endpoint

6.4.3 Modifying goals using user inputs

The input goals for a service can be found at
/mnt/ceph/workflow-id/service-id/input-goal-id/file.ext and the output for a service can
be found at /mnt/ceph/workflow-id/service-id/output-goal-id/file.ext. These locations

39

Figure 23: Airflow API usage example

can be accessed by the frontend application to facilitate user input. These locations need not point
to a file; it could also be a directory. To identify the goals used by individual services, the frontend
can use the servicesMetadata obtained from the /generateWorkflow route of the reasoner API.
Obtaining information related to each goal/service can be done using the Service Registry API.

6.5 Containerizing a Service for Airflow

All services are expected to run within Docker containers deployed through Airflow. The developers
of each service must test the containers locally before registering it into the system.

6.5.1 Creating a Dockerfile

While creating the Dockerfile for a service, the developer must keep in mind to use a lightweight
base image. This ensures quick deployment and reduces waiting time for the end user. It is
advisable to use official Docker images as the base image. A sample Dockerfile can be seen in
Figure 24.

6.5.2 Pushing the Service to a Container Registry

Once the Dockerfile is created and tested locally, the developed service image needs to be pushed to
a container registry. Airflow pulls these images from the container registry and deploys the contain-
ers on a Kubernetes cluster. The image URL needs to be stored in the Service Metadata Column
(see Section 7.13). To push the image to Virginia Tech’s container registry (container.cs.vt.edu)
the following commands can be run within the directory that contains the Dockerfile.

40

Figure 24: An example Dockerfile for a service

docker login container.cs.vt.edu
docker build -t container.cs.vt.edu/cs5604-fall-2020/team-int-repo/img:latest .
docker push container.cs.vt.edu/cs5604-fall-2020/team-int-repo/img:latest

The login command prompts a username and password, in which you must enter your VT CS
login credentials. Make sure to always include :latest in the image name. This ensures that
Airflow always pulls the latest image from the registry.

6.5.3 Using Input/Output Environment Variables

The input filenames and the output filename will be automatically available as environment vari-
ables named in the goal_metadata table. The reading/writing into the files or folders pointed to
by the environment variable needs to be handled by the developers of the service. Note that the
Dockerfile should not declare these environment variables as it gets automatically generated and
is shown in Figure 24 as an example.

6.6 CI/CD with Gitlab

In this section, we will demonstrate step-by-step how to implement a simple CI/CD with the Gitlab.

1. The first step is to configure a Gitlab runner. A Gitlab runner is an application that is used to
run the jobs in the pipeline. All the services would be executed and tested on this application.
While Gitlab offers some runners for free, it is better to configure your own runner so that

41

there is no wait/down time in order to test the pipeline. The step-wise process to configure
a runner is explained in the Developer Manual Section 7.11.

2. Most CI/CD tools expect a configuration file to exist in the project. Similarly, Gitlab CI/CD
requires a .gitlab-ci.yml file to exist in the project root.

3. The .gitlab-ci.yml file would contain all of the configuration details and tasks that one wants
to perform such as unit testing, integration testing, etc. There are usually different stages
such as "build" and "test". This file also includes the script for the tasks that need to
be performed. There are many more configurations that can be added as illustrated in
https://docs.gitlab.com/ee/ci/yaml/. Here we present two examples of a typical .gitlab-
ci.yml file as shown in Figures 25 and 26.

4. Figure 25 shows a simple configuration where we generate a text file in the "build" stage
which is our main objective and then test it in the "test" stage if the file was successfully
created. Figure 26 shows a more complex version that includes building and running a Docker
container. Similar to Figure 25, in the build stage, we build an image and then run it. Here
the objective of this service (say Service1) is to create a .json file. Then in the "test" stage,
we use another Docker image to test if the .json generated from Service1 is a valid .json or
not. These examples are just a simple illustration but one can configure them to achieve
more complex testing for their pipeline.

5. Once the repository is ready, you do a git commit. The moment you push a change, .gitlab-
ci.yml file would get triggered and start executing the tasks as defined in various stages. This
can be interactively seen on the Gitlab»CI/CD»Pipelines (see Figure 27). As shown in the
figure, one could see various stages the pipeline contains. One can also click on these stages
and see the terminal where all of the task are getting executed. This could come in handy
for debugging in case there is an error (as shown in Figure 28).

6. Lastly, the Docker images can be pushed into the container registry for deployment.

42

https://docs.gitlab.com/ee/ci/yaml/

Figure 25: Example 1: .gitlab-ci.yml file

43

Figure 26: Example 2: .gitlab-ci.yml file

44

Figure 27: Gitlab CI/CD stages

Figure 28: Terminal view of the tasks executing in the build stage as seen through the Gitlab
CI/CD interface

45

7 Developer Manual

7.1 Providing Access to Ceph Persistent Storage from KGI and ELS
VMs

In order to be able to transfer large processed datasets from the virtual machines, that store the
ingested datasets, into Ceph storage, a Ceph client must be installed on the VMs. Then, Ceph
is mounted onto the VMs, facilitating direct access. The login information and secret key are
examples (they’re not real). This is a reference that explains the process. No action is required
from any team.

1. Using the terminal on your machine, connect to the VM (a CentOS machine); must have
root access:

ssh user@etdvm

2. Enter the password:

Password

The following steps are executed in the VM:

3. Install the Ceph tools and Ceph client on the VM:

sudo yum -y install centos-release-ceph-nautilus

sudo yum -y install ceph-common

4. To have permissions to connect to and access the CS cluster, you will have to first:

Store the cluster’s secret key into a file (we named the file here: cephfs.secret)

echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > cephfs.secret

Assign read and write permissions for cephfs.secret

chmod 600 cephfs.secret

5. Create a directory that we’ll use to mount to the Ceph File System

mkdir /mnt/ceph

6. Edit /etc/fstab file (which is the OS’s file system table) to add Ceph File System info

vi /etc/fstab

Add the following line right under the last line:

101.102.1.10:/courses/cs5604 /mnt/ceph ceph name=cs5604,

secretfile=/root/cephfs.secret,_netdev,noatime 0 0

7. Mount all filesystems mentioned in fstab as indicated

mount -a

8. To check all mounted filesystems

df -h

46

9. To check content of Ceph Storage (after adding content using Track changes is on 48 Kubectl)

ls /mnt/ceph -l

10. To exit the VM and go back to your machine

exit

7.2 Kubectl Installation and Introduction

In order for teams to be able to access the container cluster including Ceph storage (and avoiding
Rancher limitations such as the 1 hour shell limit), kubectl needs to be installed on their machines.
Using Rancher (CS cloud), we have set up containers for all of the other teams to mount data to
Ceph storage.

To demonstrate, we have deployed a CentOS (named fe-centos) container on FE team’s names-
pace (cs5604-fe-db). The following steps show how to install and work with Kubectl.

1. Install Kubectl:

For Linux: (Download the latest release, make the kubectl binary executable, move the
binary into your PATH)

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-linux

For MacOS:

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-macos

For Windows:

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-windows
Alternate tip for Windows User: Kubectl can also be installed on the Windows subsystem
for Linux.

2. kubectl looks for a file named config in the $HOME/.kube directory

a. Create a directory that is named “.kube”.
mkdir /.kube

b. Create an empty file and call it “config”.
vi config

c. Go to cloud.cs.vt.edu. Under the testing cluster, click on the Kubeconfig File (see
Figure 29).

d. You’ll see the following page; click on “Copy to Clipboard” (see Figure 30).

e. Return back to your computer’s terminal, paste what you copied into the config file we
created in step (b), and then save and close the file.

3. Move the config file we just created into the .kube directory.

mv config /.kube/

47

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-macos
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-windows

Figure 29: Kubectl configuration

4. Display the pods that are within the namespace cs5604-team-db. For example, for the FE
team, the namespace is cs5604-fe-db. One can only run/get pods or deployments associated
with their team’s namespaces.

kubectl get pods –namespace cs5604-fe-db (see Figure 31 for the output)

5. Now you can use kubectl to administer the deployments in your respective namespaces.

7.3 Deploying Containers from Rancher Catalogs

In this section, we will describe how to leverage Rancher’s Catalogs and Apps to deploy containers
seamlessly. To demonstrate this feature, we deploy a MySQL container as an example. With that
said, Rancher hosts a wide variety of other applications including Elasticsearch, Kibana, Kubeflow,
etc.

Catalogs are GitHub repositories or Helm Chart repositories filled with applications that are
ready-made for deployment. Applications are bundled in objects called Helm charts [41].

1. Login to cloud.cs.vt.edu and navigate to the namespace where the application/container
has to be deployed (see Figure 32).

2. Under the Apps tab click on launch (see Figure 33).

3. Search for a ready-made container that you want to deploy (see Figure 34).

4. Configure your App with required parameters like namespace, environment variables, volume,
etc. (see Figure 35).

5. Execute the shell of the newly deployed App and type the command to test if it works
properly or not (see Figure 36).

7.4 Deploying Containers from Docker Hub

In this section, we will describe how to create a new container from Docker Hub on Rancher. To
demonstrate this feature, we deploy a Python container as an example. With that said, we can
find almost all of the containers we need in hub.docker.com. We can specify the version for any
container.

1. Open hub.docker.com, search for the container that you want to deploy, confirm the full
name of the container and the version tag, for example, python:latest (see Figure 37).

48

cloud.cs.vt.edu
hub.docker.com
hub.docker.com

Figure 30: Kubeconfig File

2. Login to cloud.cs.vt.edu and navigate to the namespace where the application/container
has to be deployed (see Figure 32).

3. Under the Workloads tab click on Deploy.

4. Configure your Container with required parameters like namespace, environment variables,
volume, etc. (see Figure 35). It should be noted that the full name of the container and the
version tag should be accurately typed into the Docker Image text-box (see Figure 38).
Click Launch to finish your deployment.

5. Execute the shell of the newly deployed App and type the command to test if it works
properly or not.

49

cloud.cs.vt.edu

Figure 31: List of pods in the namespace cs5604-fe-db

Figure 32: Navigating to CS5604-INT namespace

Figure 33: Launching a Rancher App

7.5 Configuring and Deploying Containers through Gitlab Container
Registry

In this section, we will describe how to configure and deploy containers from Gitlab Container
Registry on Rancher. For this, we will show how to generate deploy tokens on Gitlab, apply them
on Rancher, and then deploy the container from the Gitlab container registry.

50

Figure 34: Launching MySQL App

Figure 35: Configuring the App

1. The figure shows the Docker images present in the container registry present for the specific
Gitlab repository (see Figure 39).

2. This point shows the step wise process for generating a deploy token on Gitlab. A deploy
token is needed to be applied on Rancher so that any deployment through Gitlab is authen-
ticated.

[a.] Go to "Settings>Repository", expand "Deploy Tokens", and fill in the details such
as Name, Expires at (can leave it blank to indicate "Never"), and the scope as required.
Click on "Create deploy token" (see Figure 40).

[b.] Once a deploy token is created, the Username and Password would get generated.

51

Figure 36: Testing if MySQL App has been launched successfully

Figure 37: Search for container on Docker Hub

Save this Username and Password. This is generated only once during the creation of a
deploy token, hence save this username and password. We would need this later (see Figure
41).

3. Login to cloud.cs.vt.edu, navigate to the respective namespace and "Resources>Registry
Credentials". Click on "Add Registry" (see Figure 42).

4. Fill in the details for the deploy token (see Figure 43). Username and Password are the same
that were generated in the previous step.

5. For the deployment follow initial steps as explained in Section 7.4 until step 3. Fill in the
details as shown in Figure 44. Note that the Docker image here is the name of the image
present in the Gitlab registry with its tag. Click Launch.

6. The launched container ("centostest") is now available under the namespace (see Figure 45).

52

Figure 38: Search container on Docker Hub

Figure 39: Gitlab Container Registry

7.6 Mounting Ceph storage on containers

In this section, we will describe how to add the Ceph storage while creating a new container from
Docker Hub on Rancher. To demonstrate, we deploy a CentOS container as an example. Find the
CentOS container on Docker Hub. Note its details. The initial configuration is similar to steps
1-4 in Section 7.4 until the ‘Launch’. Now, before launching, in order to add the Ceph storage, we
will perform the following steps:

1. Scroll down and click on Select Volumes-Add Volume (see Figure 46). In the Add Volume
drop down - choose ‘Add an ephemeral volume’ (see Figure 47).

2. In the ephemeral volume portal - In the ‘Source’ drop down, select “Ceph Filesystem” (see
Figure 48) and define the remaining configurations as shown in Figure 49.

3. In case Step 2 doesn’t show ‘Ceph Filesystem’ in the drop down (this is possible as Rancher

53

Figure 40: Filling deploy token details

Figure 41: Deploy Token Username and Password

may remove it from its interface), then one can also do this by directly modifying the YAML
file. For this, navigate to the respective namespace where the pod has been deployed. Click
the “...” button on the right side of the container and select ‘View/Edit YAM’ (see Figure 50).

4. One can modify the YAML as follows: This will mount Ceph to the container.

...

54

Figure 42: Registry Credentials on Rancher

Figure 43: Adding deploy token details

spec:
containers:
- image: centos:latest

...
volumeMounts:
- mountPath: /mnt/ceph
name: vol1

...
volumes:
- cephfs:

monitors:
- 128.173.41.10:6789
- 128.173.41.11:6789
- 128.173.41.12:6789
path: /courses/cs5604

55

Figure 44: Deploying container from Gitlab Container Registry

Figure 45: Deployed Container "centostest" present under the namespace

secretRef:
name: ceph-cs5604

56

Figure 46: Configure Docker image details on deploy portal

Figure 47: Select Volumes and Add Volume to mount storage on container

user: cs5604
name: vol1

"mountPath" is where it will be mounted inside the container.
"monitors" are the IPs and ports for our Ceph monitor servers.
"path" is the CephFS subpath to mount; leave this as "/courses/cs5604".
"secretRef" is the *name* of the secret that contains the security key.
"user" is the CephFS user to authorize; leave it as "cs5604".

57

Figure 48: Select ‘Ceph Filesystem’ as the Source on Ephemeral Volume portal’

5. Now execute the shell and one should be able to access the Ceph storage at /mnt/ceph

6. In this case, the pods are not running and Ceph is not getting mounted after editing the
YAML file. Then there’s a possibility that the Ceph storage is not authenticated. For this,
one needs to add the authentication key in "Resources>Secrets>Secrets" (see Figure 51).

7.7 Running Airflow on the Kubernetes cluster

7.7.1 Setting up the container

Airflow was set up on a Kubernetes pod using the official Docker image [23]. Airflow requires a
lot of configuration, two main ones being - a URL to the database that would store metadata and
the type of executor that would be used (more about this in Section 4.7). The configuration could
be done in the following two ways.

• Through code - Python has a great library called ConfigParser; a small script could be
made to set desired values to fields in the configuration file. This script would have to be
invoked every time the container is instantiated.

• Through environment (ENV) variables - This method was chosen as Airflow inherently sup-
ports such a mechanism and setting up ENV variables is extremely easy through the Dockerfile.
This method is also suggested in the official documentation [25].

58

Figure 49: Enter Configuration details for the Ceph Filesystem on Ephemeral Volume portal

Figure 50: Snapshot of a pod under a namespace and "View/Edit YAML" button

Once the Dockerfile (accessible at our Gitlab repository [54]) was set up with the needed ENV
variables, we built an HTTP API for running Airflow commands. To do so, we used a Python
library called FlaskShell2HTTP. The library can be used to make web API endpoints for shell
commands. We set up 3 endpoints - one to upload a dynamically generated Airflow document,
one to run a workflow, and an endpoint to run a service from a given workflow. (Refer to Section
6.4 for usage instructions.)

Finally, an image was built and pushed to Virginia Tech’s image registry using the following.

docker build -t
container.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/
airflow:latest .

59

Figure 51: Adding Ceph Secret on Rancher

docker push
container.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/
airflow:latest

After the image was registered, it was deployed on cloud.cs.vt.edu through the Rancher
UI; see Section 7.5. Note that once the API is deployed, the following command needs to be run
through the ‘Execute Shell’ option on Rancher:

airflow db init

The command needs to be run only once and is used to connect the Airflow instance with the
Postgres database.

7.7.2 Issues faced

To test the deployment, a simple workflow was developed consisting of two tasks and stored in
test_dag.py (accessible at our Gitlab repository [54]). This file was copied into the container’s
dags folder (default location /opt/airflow/dags). The main aim of this task was to see if Airflow
could indeed spin up new pods in the cluster to complete each task in the workflow. This step
was very troublesome as the default user in any namespace in cloud.cs.vt.edu does not have
enough permissions to do so. To solve this issue, the kubeconfig was copied onto /opt/airflow/
using the COPY command on Docker. Within the test_dag.py file pods were deployed using the
KubernetesPodOperator; this operator takes an argument config_file which should point to
the kubeconfig in the container (in our case, /opt/airflow/kubeconfig). Do not forget to set
the in_cluster argument of the operator to False, otherwise it reads the default configuration
file from the cluster.

Another issue we faced was to define a shell script for spinning up the Airflow API and to
initialize the connection between Airflow and Postgres. We hoped to call the shell script during
the initialization of the Docker container, however, both the commands were not running for
unknown reasons. Hence we decided to run the API through the Dockerfile and then run the
airflow db init command manually.

Finally, Airflow (v2.0.0) was having trouble running tasks with more than 3-4 services and we

60

have raised an issue on their GitHub [56]. The parser they are using to read logs from Kubernetes
seems to be causing them issues. There has been no response from their side, but we have created
a small patch to use locally in our project.

7.8 Running Postgres on the Kubernetes cluster

7.8.1 Setting up the container

Postgres was set up on a Kubernetes pod as well using the official Docker image [24]. Postgres
is being used as our database for the services available as well as holding the configuration and
data for Airflow. A Dockerfile (accessible at our Gitlab repository [55]) was created that would
pull the official image and run a few commands to automatically set up three databases (one for
Airflow, one for the service registry, and one for the frontend) within the pod. These commands
were executed using the RUN command supported in Docker. Users were also created for each
database to ensure that each service only has access to the appropriate database. An example
command used for setting up a database and creating a user is as follows.

psql –command "create database airflow;"
psql –command "create user airflow with encrypted password ’xxxx’;"

Finally, an image was built and pushed to Virginia Tech’s image registry using the following
commands.

docker build -t
container.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/
postgres:latest .

docker push
container.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/
postgres:latest

After the image was registered, it was deployed on cloud.cs.vt.edu through the Rancher UI.
Refer to Section 7.5 for more details.

7.9 Accessing Elasticsearch through the Elasticsearch VM

In order to be able to connect to the Multi-Node Elasticsearch service running in Docker containers
on the Elasticsearch VM, a developer has to be installed on the Elasticsearch.cs.vt.edu VM either
directly from the VT network or by VPN and through SSH, through Putty.

The login information is an example. The actual connection process has been provided directly
to the teams.

1. Using the terminal on your machine, connect to the VM (an Ubuntu machine).

2. The following steps are executed in the VM:

61

Figure 52: VPN Connection

3. Curl to the VM local host or access through a web browser. The addresses have previously
been provided to the teams.

4. Once connected to the Elasticsearch VM, connect to the Elasticsearch Nodes by curling to
the cat/indices?v (previously provided)

5. Begin uploading documents and indexing according to the individual team plan.

7.9.1 Issues faced

To test the deployment, a simple shell was executed on the running Postgres pod. Using this, we
checked if the databases were set up correctly within Postgres. After this was confirmed, we tried
to set up a connection between the Airflow pod and the Postgres pod. We faced problems here
because we were hard coding the IP address of the Postgres pod into the Airflow configuration.
This was an issue because every time we spin up the Postgres pod, it would obtain a new IP address
which would in turn requires us to modify the Airflow deployment. We managed to fix this by
accessing pods using service names (see Section 7.10). After this was done, we ran the airflow

62

Figure 53: SSH through Putty

Figure 54: VM Directory for Elasticsearch

db init command from the Airflow pod. This command generated about 20 tables successfully
on the airflow database in the Postgres pod.

63

Figure 55: VM Directory for Elasticsearch

7.10 Enabling pod to pod communication within a namespace

Once the pods are deployed, depending on the task at hand, it may be important for them to
communicate between each other. For example, let’s say one pod is running a database and
another pod is running a web server that wishes to connect to the database. One could hard code
the IP address of the pod running the database on the web server but this solution is not optimal
as pods are allocated IP addresses dynamically. This means that if the database pod is redeployed
for some reason, one has to change the IP address in the web server as well. To solve this issue,
we create a service-name for the database pod. service-name is a namespace specific ‘domain
name’ of sorts given to a pod using which any pod in a namespace can identify another pod within
that same namespace. To do so, perform the following steps (see Figure 56).

• While deploying the pod to Rancher click on the Ports section. If the pod is already deployed,
it can be accessed from the Edit page (found by clicking the three dots on the extreme right).

• Set the value of port name to the desired service-name. This value will be subsequently
used to access this pod.

• Set the value of Publish the container port as the port number on which the database
listens. For example, in the case of Postgres, it runs on port 5432.

• Leave the other values as is.

Once done, it can be accessed using service-name.namespace.svc.local, in our case
services-db.cs5604-int-test.svc.cluster.local

7.11 Installing Gitlab-Runner

In this section we describe how to install the Gitlab-Runner on a virtual machine in order to create
a Continuous Integration and Continuous Development (CI/CD) environment. Since we are using
Docker to run the Gitlab Runner, the only installation overhead is that Docker is installed on the
specific VM, and those instructions will depend on your environment [30, 31]. Once Docker has
been installed, the user will need to modify the config.toml at lines 9 and 10. Once the config file
has been updated, the user should run

64

https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/blob/master/scripts/gitlab/config.toml

Figure 56: Creating a service name for pod to pod communication

docker cp con f i g . toml g i t l ab_g i t l ab −runner_1 : / e t c / g i t l ab −runner

in order to update the configuration file within the container.
The user will need to change the URL to that of their Gitlab server on line 9. Now, the

user needs to get a token value for line 10, so they should navigate to the project level CI/CD
configuration as shown in Figure 57. From there, they should follow the instructions for setting up
a group Runner using the example from Figure 58 where the URL will be the URL of their Gitlab
instance (as discussed above) and the token (blacked out here) will be included on line 10 of their
config.toml for Gitlab.

Once all this configuration has been completed, the user can now start the service by running

docker-compose up -d

and verifying it worked with

docker-compose logs

7.12 Installing Elasticsearch

In this section we describe how to install Elasticsearch on a virtual machine in order to index and
search the data. Since we are using Docker to run Elasticsearch, the only installation overhead on
the virtual machine is Docker itself and the instructions to install that will depend on your specific
environment [30, 31]. Once Docker has been installed, the user will need to run

docker-compose up -d

and verifying Elasticsearch started with

docker-compose logs

65

Figure 57: Connecting the CI/CD system

Once this step has been completed, the user must follow the Elasticsearch documentation in order
to set up SSL and secure the instance [15, 11]. The final step is securing the virtual machine
according to advice from the Virginia Tech Computer Science Techstaff. First, the user should run
the following commands

sudo ufw limit ssh
ufw route allow proto tcp from 198.82.184.0/24 to any port 9200
sudo ufw enable (only needs to be run once)

Then they should follow the documentation for securing Docker to the internet. [57].

66

Figure 58: Adding a Gitlab Runner to Gitlab

7.13 Service Registry Database

Figure 59 shows the schema used by the various tables jointly called the services database. The
table descriptions are as follows.

A. Goal Metadata
This table stores metadata related to information goals that will be used as inputs to the services.
It also includes metadata related to the output goal produced by a registered service. The following
are the column descriptions.

• goal_id - The primary key of the table is an int value used to uniquely identify a goal.

• goal_name - A human readable str variable is stored in this column to represent the goal’s
name.

• goal_description - A str variable that describes the goal in detail, helps the end user in
choosing the goal they want to use.

• goal_format - A str variable representing the format of the data represented by the goal.

• environment_variable - Name of the environment variable that will be available to use
within the Docker containers running the services.

• file_location - A str variable that stores the path of the data (in the NFS) tied to this
goal. If the data for the goal is generated by a service, an empty file with the expected file
name should be stored in the NFS.

B. Service Metadata
This table stores metadata of the services that will be deployed as a part of workflows. The
following are the column descriptions.

• service_id - The primary key of the table is an int value used to uniquely identify a service.

• service_name - A human readable str variable is stored in this column to represent the
service’s name.

67

• service_description - A str variable that describes the service in detail, that helps future
developers understand the existing services and develop new services different from existing
ones.

• image_url - A str variable representing the url of the image in the container registry. The
service Docker image could be hosted on any publicly accessible Docker registry or Virginia
Tech’s local Docker registry (http://container.cs.vt.edu).

• cluster_namespace - A str variable that stores the kubernetes namespace in which the
service will be deployed.

C. Reasoner
This table stores the goals needed for a service to run and what the goal the service produces
as an output. This data is useful for the reasoner to generate workflows based on a requested
information goal. Multiple entries can exist for a particular service_id depending on the number
of goals needed / goals achievable. The table contains the following columns.

• service_id - Foreign key from the Service Metadata table.

• goal_id - Foreign key from the Goal Metadata table used to store the goal attainable using
a particular service.

• input_goal_id - Foreign key from the Goal Metadata table used to store the input goal
used by a particular service.

68

FK2 input_goal_id

FK3 service_id

file_location

cluster_namespace

Service Metadata

PK service_id

service_name

service_description

image_url

Goal Metadata

PK goal_id

goal_name

goal_description

environment_variable
Reasoner

FK1 goal_id
goal_format

Figure 59: Schema of various tables used for registering services

69

References
[1] Google’s Container Registry. https://cloud.google.com/container-registry/, accessed

on October 8, 2020.

[2] Computer Science Cloud, 2020. https://cloud.cs.vt.edu, accessed on September 15, 2020.

[3] DockerSlim, Minify and Secure Your Docker Containers., 2020. https://dockersl.im, ac-
cessed on September 15, 2020.

[4] Podman, 2020. https://github.com/containers/podman, accessed on September 17, 2020.

[5] Zoom, 2020. https://zoom.us, accessed on September 15, 2020.

[6] 451 Research. 451 Research Says Application Containers Market
Will Grow to Reach $4.3bn by 2022. https://451research.com/
451-research-says-application-containers-market-will-grow-to-reach-4-3bn-by-2022,
accessed on September 15, 2020.

[7] The Kubernetes Authors. Nodes - cluster architecture - Kubernetes Concepts, 2020. https:
//kubernetes.io/docs/concepts/architecture/nodes/, accessed on September 15, 2020.

[8] The Kubernetes Authors. Overview of kubectl, November 2020. https://kubernetes.io/
docs/reference/kubectl/overview/, accessed on December 4, 2020.

[9] The Kubernetes Authors. Pod Overview - Workloads - Kubernetes Concepts, 2020. https://
kubernetes.io/docs/concepts/workloads/pods/pod-overview/, accessed on September
15, 2020.

[10] Michael Bose. Kubernetes vs Docker, 2019. https://www.nakivo.com/blog/
docker-vs-kubernetes/, accessed on December 17, 2020.

[11] Elasticsearch B.V. and Apache Software Foundation. Encrypting communications
in Elasticsearch. https://www.elastic.co/guide/en/elasticsearch/reference/6.6/
configuring-tls.html, accessed on December 8, 2020.

[12] Elasticsearch B.V. and Apache Software Foundation. Kibana: Explore, visualize, discover
data. https://www.elastic.co/kibana, accessed on October 8, 2020.

[13] Elasticsearch B.V. and Apache Software Foundation. Logstash: Collect, parse, transform logs.
https://www.elastic.co/logstash, accessed on October 8, 2020.

[14] Elasticsearch B.V. and Apache Software Foundation. Open source search: The creators of
Elasticsearch, ELK Stack and Kibana. https://www.elastic.co/, accessed on October 8,
2020.

[15] Elasticsearch B.V. and Apache Software Foundation. Setting up TLS on a
cluster. https://www.elastic.co/guide/en/x-pack/current/ssl-tls.html#
generating-signed-certificates, accessed on December 8, 2020.

70

https://cloud.google.com/container-registry/
https://cloud.cs.vt.edu
https://dockersl.im
https://github.com/containers/podman
https://zoom.us
https://451research.com/451-research-says-application-containers-market-will-grow-to-reach-4-3bn-by-2022
https://451research.com/451-research-says-application-containers-market-will-grow-to-reach-4-3bn-by-2022
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://www.nakivo.com/blog/docker-vs-kubernetes/
https://www.nakivo.com/blog/docker-vs-kubernetes/
https://www.elastic.co/guide/en/elasticsearch/reference/6.6/configuring-tls.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.6/configuring-tls.html
https://www.elastic.co/kibana
https://www.elastic.co/logstash
https://www.elastic.co/
https://www.elastic.co/guide/en/x-pack/current/ssl-tls.html#generating-signed-certificates
https://www.elastic.co/guide/en/x-pack/current/ssl-tls.html#generating-signed-certificates

[16] Elasticsearch B.V. and Apache Software Foundation. What is the ELK Stack? https:
//www.elastic.co/what-is/elk-stack, accessed on October 8, 2020.

[17] Canonical. Linux Containers, 2020. https://linuxcontainers.org/, accessed on September
15, 2020.

[18] Eric Carter. 2018 Docker Usage Report, May 29, 2018. https://sysdig.com/blog/
2018-docker-usage-report/.

[19] Dave Bartoletti and Charlie Dai. The Forrester New Wave™: Enterprise Container Plat-
form Software Suites, Q4 2018, 2020. https://www.docker.com/resources/report/
the-forrester-wave-enterprise-container-platform-software-suites-2018, ac-
cessed on September 15, 2020.

[20] Docker. Best practices for writing Dockerfiles, 2020. https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/, accessed on September 15, 2020.

[21] Docker. Docker, 2020. https://www.docker.com/, accessed on September 15, 2020.

[22] Docker. Docker Hub, 2020. https://hub.docker.com/, accessed on September 15, 2020.

[23] Docker. Official Airflow Docker image, 2020. https://hub.docker.com/r/apache/airflow,
accessed on October 8, 2020.

[24] Docker. Official Postgres Docker image, 2020. https://hub.docker.com/_/postgres, ac-
cessed on October 8, 2020.

[25] Apache Software Foundation. Airflow documentation: How to modify the Airflow config-
uration file, 2020. https://airflow.apache.org/docs/stable/howto/set-config.html,
accessed on October 8, 2020.

[26] Apache Software Foundation. Apache Airflow, 2020. https://airflow.apache.org/docs/
stable/, accessed on October 8, 2020.

[27] Apache Software Foundation. Apache Mesos, 2020. http://mesos.apache.org/, accessed
on October 8, 2020,.

[28] Apache Software Foundation. Kafka Documentation, 2020. https://kafka.apache.org/
intro, accessed on October 29, 2020.

[29] Gitlab. GitLab, 2020. https://about.gitlab.com/, accessed on September 15, 2020.

[30] Gitlab. GitLab Runner Docker, 2020. https://docs.gitlab.com/runner/install/docker.
html, accessed on September 15, 2020.

[31] Gitlab. GitLab Runner Docs, 2020. https://docs.gitlab.com/runner/, accessed on
September 15, 2020.

[32] Gitlab. Install GitLab Runner using the official GitLab repositories. 2020. https://docs.
gitlab.com/runner/install/linux-repository.html, accessed on September 15, 2020.

71

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://linuxcontainers.org/
https://sysdig.com/blog/2018-docker-usage-report/
https://sysdig.com/blog/2018-docker-usage-report/
https://www.docker.com/resources/report/the-forrester-wave-enterprise-container-platform-software-suites-2018
https://www.docker.com/resources/report/the-forrester-wave-enterprise-container-platform-software-suites-2018
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://www.docker.com/
https://hub.docker.com/
https://hub.docker.com/r/apache/airflow
https://hub.docker.com/_/postgres
https://airflow.apache.org/docs/stable/howto/set-config.html
https://airflow.apache.org/docs/stable/
https://airflow.apache.org/docs/stable/
http://mesos.apache.org/
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://about.gitlab.com/
https://docs.gitlab.com/runner/install/docker.html
https://docs.gitlab.com/runner/install/docker.html
https://docs.gitlab.com/runner/
https://docs.gitlab.com/runner/install/linux-repository.html
https://docs.gitlab.com/runner/install/linux-repository.html

[33] Google and Cloud Native Computing Foundation. Kubernetes. https://github.com/
kubernetes/kubernetes, accessed on Dec 8, 2019.

[34] Red Hat. Building, running, and managing containers, 2020. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_
and_managing_containers/index, accessed on September 17, 2020.

[35] Red Hat. CoreOS, 2020. https://coreos.com/, accessed on October 8, 2020.

[36] Alex Hicks. INT Team Elasticsearch repository on Gitlab, 2020. https://git.cs.vt.edu/
cs-5604-fall-2020/int/team-int-repo/-/blob/master/scripts/elasticsearch/es.
py, accessed on October 8, 2020.

[37] Discord Inc. Discord, 2020. https://discord.com, accessed on September 15, 2020.

[38] Jack Clark. Google: ‘EVERYTHING at Google runs in a container’, May 23, 2014. https:
//www.theregister.co.uk/2014/05/23/google_containerization_two_billion/.

[39] Kat Cosgrove Justin Garrison Noah Kantrowitz Bob Killen Rey Lejano Dan “POP”
Papandrea Jeffrey Sica Davanum “Dims” Srinivas Jorge Castro, Duffie Cooley. Don’t
panic: Kubernetes and docker, 2020. https://kubernetes.io/blog/2020/12/02/
dont-panic-kubernetes-and-docker/, accessed on December 9, 2020.

[40] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed messaging system for log
processing. NetDB, pages 1–7, 2011.

[41] Rancher Labs. Catalogs and Apps, 2020. https://rancher.com/docs/rancher/v2.x/en/
catalog/, accessed on September 15, 2020.

[42] Paul B Menage. Adding generic process containers to the Linux kernel. In Proceedings of the
Linux symposium, volume 2, pages 45–57. Citeseer, 2007.

[43] Dirk Merkel. Docker: lightweight Linux containers for consistent development and deploy-
ment. Linux journal, 2014(239):2, 2014.

[44] Platform9. Deploy Kubernetes: The Ultimate Guide, 2020. https://platform9.com/docs/
deploy-kubernetes-the-ultimate-guide/, accessed on September 15, 2020.

[45] Rancher Labs. Rancher. https://rancher.com, accessed on Dec 9, 2019.

[46] Rancher Labs. Rancher overview. https://rancher.com/what-is-rancher/overview/, ac-
cessed on Dec 9, 2019.

[47] Rancher Labs. What Rancher adds to Kubernetes. https://rancher.com/
what-is-rancher/what-rancher-adds-to-kubernetes/, accessed on Dec 9, 2019.

[48] Red Hat, Inc., and contributors. Ceph, 2019. https://ceph.io, accessed on September 15,
2020.

72

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://coreos.com/
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/blob/master/scripts/elasticsearch/es.py
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/blob/master/scripts/elasticsearch/es.py
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/blob/master/scripts/elasticsearch/es.py
https://discord.com
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://rancher.com/docs/rancher/v2.x/en/catalog/
https://rancher.com/docs/rancher/v2.x/en/catalog/
https://platform9.com/docs/deploy-kubernetes-the-ultimate-guide/
https://platform9.com/docs/deploy-kubernetes-the-ultimate-guide/
https://rancher.com
https://rancher.com/what-is-rancher/overview/
https://rancher.com/what-is-rancher/what-rancher-adds-to-kubernetes/
https://rancher.com/what-is-rancher/what-rancher-adds-to-kubernetes/
https://ceph.io

[49] Red Hat, Inc., and contributors. Quay, 2020. https://quay.io/, accessed on September 15,
2020.

[50] Rami Rosen. Linux containers and the future cloud. Linux J, 240(4):86–95, 2014.

[51] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: a scalable, high-performance alternative to
hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275–287. ACM,
2007.

[52] Virginia Tech Computer Science Technical Staff. Virginia Tech Docker Registry, 2019. https:
//wiki.cs.vt.edu/wiki/Howto::Docker_Registry, accessed on September 16, 2020.

[53] Ally Technologies. Ally.io, 2020. https://ally.io, accessed on September 15, 2020.

[54] Mohit Thazhath. INT Team Airflow repository on Gitlab, 2020. https://git.cs.vt.edu/
cs-5604-fall-2020/int/team-int-repo/-/tree/master/airflow, accessed on October 8,
2020.

[55] Mohit Thazhath. INT Team Postgres repository on gitlab, 2020. https://git.cs.vt.edu/
cs-5604-fall-2020/int/team-int-repo/-/tree/master/postgres, accessed on October
8, 2020.

[56] Mohit Thazhath. Issue raised on Apache Airflow Github repository, 2020. https://github.
com/apache/airflow/issues/12728, accessed on December 2, 2020.

[57] Jack Wallen. How to fix the Docker and UFW security flaw, 2018. https://
www.techrepublic.com/article/how-to-fix-the-docker-and-ufw-security-flaw/, ac-
cessed on December 8, 2020.

[58] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 307–320. USENIX Association, 2006.

73

https://quay.io/
https://wiki.cs.vt.edu/wiki/Howto::Docker_Registry
https://wiki.cs.vt.edu/wiki/Howto::Docker_Registry
https://ally.io
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/tree/master/airflow
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/tree/master/airflow
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/tree/master/postgres
https://git.cs.vt.edu/cs-5604-fall-2020/int/team-int-repo/-/tree/master/postgres
https://github.com/apache/airflow/issues/12728
https://github.com/apache/airflow/issues/12728
https://www.techrepublic.com/article/how-to-fix-the-docker-and-ufw-security-flaw/
https://www.techrepublic.com/article/how-to-fix-the-docker-and-ufw-security-flaw/

A Manual Service Registry Artifacts

Figure 60: WP Service Metadata

Figure 61: WP Goal Metadata

Figure 62: WP Reasoner Metadata

74

Figure 63: ETD Service Metadata

Figure 64: ETD Goal Metadata

75

Figure 65: ETD Reasoner Metadata

76

Figure 66: TWT Service Metadata

Figure 67: TWT Goal Metadata

77

Figure 68: TWT Reasoner Metadata

78

	List of Tables
	List of Figures
	Overview
	Project Management
	Problems and Challenges
	Solutions Developed
	Future Work

	Literature Review
	Requirements
	Overall Project Requirements
	INT Team Requirements

	Design
	Elasticsearch
	Docker Containers
	Kubernetes, Rancher, kubectl, and Containers
	Gitlab
	Ceph
	NFS
	Apache Airflow
	Virtual Machines
	Reasoner Engine
	Service API
	Apache Kafka
	System Architecture

	Implementation
	Timeline
	Milestones and Deliverables

	User Manual
	Rancher UI: Deploying Containers and Accessing Persistent Storage
	Elasticsearch
	Service Registry REST API
	Interacting with workflow related REST APIs
	Reasoner API
	Airflow API
	Modifying goals using user inputs

	Containerizing a Service for Airflow
	Creating a Dockerfile
	Pushing the Service to a Container Registry
	Using Input/Output Environment Variables

	CI/CD with Gitlab

	Developer Manual
	Providing Access to Ceph Persistent Storage from KGI and ELS VMs
	Kubectl Installation and Introduction
	Deploying Containers from Rancher Catalogs
	Deploying Containers from Docker Hub
	Configuring and Deploying Containers through Gitlab Container Registry
	Mounting Ceph storage on containers
	Running Airflow on the Kubernetes cluster
	Setting up the container
	Issues faced

	Running Postgres on the Kubernetes cluster
	Setting up the container

	Accessing Elasticsearch through the Elasticsearch VM
	Issues faced

	Enabling pod to pod communication within a namespace
	Installing Gitlab-Runner
	Installing Elasticsearch
	Service Registry Database

	Bibliography
	Manual Service Registry Artifacts

